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A

Probability and Statistics

A.1 Tutorial: Poisson and Gaussian random variables

In this tutorial we provide a brief review of the basic definitions and properties of Poisson
and Gaussian random variables. This material is of relevance primarily in the last part of
this book on data analysis, although we also briefly discuss related random phenomena in
Sections 4.3 and 12.7.1. We begin with a concise treatment of the basics of random variables.

The mathematical language of probability theory and statistics relies on the concept of
a random variable. A random variable is used to provide a mathematical description of the
random events that are being analyzed. If we would like to analyze the results of a coin
tossing experiment, we can do it with the help of a random variable, denoted here with X.
The possible values of this random variable are {—1,1}, where —1 stands for heads and
1 stands for tails. We also make use of a very abstract set €2 of possible random events.
The random variable is formally a function that attributes to each random event w €
an outcome of the coin tossing experiment, meaning an element in {—1,1}. For example,
X (w) =1 if the result of the coin toss is tails.

The random variable that we just discussed is an example of a discrete random variable as
it has discrete values. Continuous random variables, meaning random variables with values
in the real numbers, play an equally important part in probability theory and statistics.
For example, the distance that an athlete will throw a javelin in a certain attempt might
be modeled as a continuous random variable with values in the real numbers.

The probability with which a certain random event occurs is described by the probability
mass function p for a discrete random variable X, i.e.,

pk)=P(X=%k), k=...,-2,-1,0,1,2,...
denotes the probability that the outcome of the random event is k. As all probabilities have

to sum to 1, we have that

o0 oo

> pk)y= > P(X=k =L

k=—0o0 k=—oc0

For a probabilistic description of continuous random variables, we consider the probability
that the outcome of the continuous random variable is in a subset A of the real numbers, i.e.,
P (X € A). We will often encounter the situation where, for each (reasonably well-behaved)
subset A of the real numbers, this expression can be written as

P(XeA= /Ap(x)dx

for a positive function p, which is called the probability density function for the probability
distribution P. The fact that P defines a probability distribution on the real numbers implies
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/OO p(x)dx = 1.

— 00

that

Also note that for probability distributions P for which a probability density exists, we
immediately have that the probability that the outcome of the random event is a specific
real number must be 0, as for any real number a, we have

Pxelan = [

» p(x)dx = /a p(z)dr = 0.

Continuous random variables can also be defined such that they have vector values. For
example, in Part IV of this book, we will have occasion to consider the random impact
points of photons in an idealized infinite detector plane.

An important notion in probability theory is that of the expected value of a random
variable. The expected value indicates an “average” or “expected” outcome of a random
experiment. In fact, the definition of the expected value for a discrete random variable
illustrates this well. For a discrete random variable, any number k is a potential outcome.
We “average” all the possible outcomes, each weighted by its probability. The expected
value E [X] of a discrete random variable X is therefore defined by

ElX]:= Y k-P(X=k= Y k-pk). (A1)

k=—o0 k=—o0
For the coin tossing example, if the probabilities of heads and tails are %
value of the associated random variable X is immediately calculated as

S k()

k=—o0

=+ (=2) p(=2) +(=1) - p(=1) +0-p(0) +1-p(1) +2-p(2) + - -

each, the expected

E[X]
1 1
:...+(_2).0+(_1).§+0.0+1.54_2.()4_...

This shows that the expected value of the random coin tossing experiment is 0. Intuitively,
this is the correct result because with equal probability, the outcome of the experiment is
either positive or negative. Therefore the average outcome is 0. For a continuous random
variable, the analogous definition is

E[X]:= /00 x - p(x)dz.

These definitions immediately imply the following so-called linearity property of the ex-
pectation. If we have two random variables X and Y and real numbers a and (3, then
the expectation of the linear combination of X and Y is the linear combination of the
expectations of X and Y, or formally,

ElaX 4+ 8Y]=aE[X]+ BE[Y].

While the expected value of a random variable gives an expression for the “average” outcome
of a random experiment, the variance is defined so that it provides an expression for the
variation of the outcome around the expected value. The variation is given in terms of the
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square of the difference between an outcome and the expected value. The variance Var (X)
of a random variable X is defined in the sense of an expected value of the variation, i.e.,

Var (X) := E {(X ~B[X))?]. (A.2)

For the coin tossing example, we can immediately compute the variance to be

Var (X) = E [(X - 0)2} —E[XY = Y K pk)

k=—o00

=4 (=2)%p(=2) + (=17 - p(=1) + 07 p(0) + 17 - p(1) + 2% - p(2) + -

1 1
:---+(—2)2-0+(—1)2-§+02-0+12-§+22-0+---
S .

S 2 2

This shows that the variance of the coin tossing experiment is 1.
More generally, we define the expectation of a function g of a random variable X by

o0

Elg(X)]:= > g(k)-P(X =k)

k=—o00
in the case of a discrete random variable, and by
B0 = [ gla) - pla)da

for a continuous random variable with probability density p.

A.1.1 Poisson random variables

The number of photons emitted by a light source, such as by a fluorescence-emitting object,
can be modeled as a Poisson random variable. Consequently, the light signal impacting a
camera pixel can be modeled with a Poisson random variable.

A random variable X with values in {0,1,2,...} is called a Poisson random variable if
its probability distribution function (i.e., probability mass function) is given by

palk)=e"—, k=0,1,2,..., (A.3)

where A\, 0 < A < 00, is the parameter of the distribution. For verification that py is indeed
a probability distribution, we show that it sums to 1 over all possible values of k:

S A AN~ A AN
ZP,\(/C)ZZe_Eze_ Zﬁ:e_e =1.
k=0 k=0 k=0

Applying the definition of the expectation of a random variable (Eq. (A.1)), the mean of a
Poisson random variable X is given by

BIX] =S hopa(h) = S ket g B e RN
[]*Z 'P,\()*Z e er ZW*G Z?
k=0 k=0 k=0 k=1
) A VS Ad
= e kz(k—l)!_e e’ = A. ()
=1
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The mean of a Poisson random variable is therefore the parameter A of its probability
distribution. To obtain the variance of a Poisson random variable X, we start with the
general expression for the variance of a random variable (Eq. (A.2)), and obtain

Var (X) = E [(X -E [X])Q] —E [XZ — 92X -E[X] + (E [X])Q}
—E[X? -E@2X -B[X]]+E {(E [X])ﬂ = B [X?] - 2B[X]E [X] + (E [X])?
~ B[X?] ~2(B[X))’ + (B[X])? = E[X?] - (E[X)? = E [x?] - 22

We then calculate E [X 2], obtaining
2 o 2 2 7>\/\ - B2 7,\)‘
S S
k=0 !
e k—1 e _ k—1 > k-1
:)‘Q_AZ kA e Z(kz 1/\ +Z A

— (k=1 k=1 =
e —1 Ak 1 -
PILLLRE) pp
k=1

=\[E [X}—i—e”\e’\] :A[A+1]:>\2+)\.

Hence the variance of X is given by
Var (X) =E[X?] =X =X+ A -X =]\ (A.5)
This shows that the variance of a Poisson random variable equals its mean.

A.1.1.1 Additivity of Poisson random variables

Let X7 be a Poisson random variable with parameter A1, and let X5 be a Poisson random
variable with parameter As. Let X; and X5 be stochastically independent. Then the sum

X = X1 + X2 (AG)

is a Poisson random variable with parameter A1 + Ao. The difference X; — X5, however, is
in general not a Poisson random variable (Exercise A.2).

A.1.2 Gaussian random variables

In a pixelated detector, the signal detected from a light source in each pixel is Poisson
distributed. Therefore, the detected signal X is modeled by a Poisson random variable. The
detector’s readout process, however, produces a noise signal X, in the readout electronics
that is typically modeled as a Gaussian random variable. Therefore, the final signal X,
that is measured in a pixel is given by

Xm =X+ X, (A7)
A random variable X with real values is called a Gaussian random variable if its probability
density function is given by

1

2no

eiﬁ(zﬂ’)i z € R, (A.8)

Pn,o2 (x) =

where 77 € R and ¢ > 0. This random variable has mean n and variance o2 (Exercise A.10).
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A.2 Expectation of a Poisson random variable given a sum of Pois-
son random variables

The following result is central to our derivation of the Shepp-Vardi algorithm in Sec-
tion 21.5. Let X1, ..., X, be independent Poisson-distributed random variables with means
Al,.. AL Let Y = Ele Xj. Then for k = 1,...,L and m a nonnegative integer, the
conditional expectation E [Xj | Y = m] is given by

m)\k
EX,|Y=m=—""""".
X | ] M+ AL
In order to show this, we first compute, using Zn1+~~+nL:m to denote the summation over
all combinations of nonnegative integers nq,...,ny that add up to m,
PY=m)=P(X1+---+Xp,=m)
L )\"LJ
= Z P(Xi=mn1,..., X, =nr) = Z He’)‘jﬁ
ni+-+np=m ni+-+np=m j=1 J
1 I
ST S | B
m ni+--+nr=m Hj:l nj' Jj=1
m
e~ (Art-F+AL) L
- m! A ’
j=1
where we have used the multinomial theorem
q! = k
- 7 _ I K
(1 +22+4---+2p) Z kl!kz!"'kD!HmJ
ki+--+kp=q j=1
for D a positive integer, ¢ a nonnegative integer, and ki, ..., kp all nonnegative integers.

For Y = Zle X, we next compute, for k=1,...,L,

P(Xk:nk,Y:m)

P(Xk:nk|Y:m): P(Y:m)

Using the above result, we evaluate the numerator as

P(Xk:nk,Y:m):P(Xk:nk,X1+---+XL:m)
=PXp=np, Xo +- -+ Xy + Xpp1 +---+ X =m —ny)
=PXp=mp)P(Xi+ -+ Xp1 + X1+ + Xp =m —ny)

m—ny
N )\Z}c e~ (At F A1+ A g1+ AL) L
Ak

¢ n! (m —ng)! Z Aj

j=1,j#k
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Therefore, we have

P(Xk:nk,Y:m)

P(Xk:nk|Y=m)=

P(Y =m)
o )\nk e~ (Mt X 1+ 1AL ZL ‘ v m—ng
nk! (m—mnp)! j=1,G#k 71

e—(Ai+tAag) Qat+AL)™
m!

o ; e
T Gr)! (ijl,#k Aj)
T

B (m))\nk (Zf:l,jy&k /\j)m_nk .

nk) F A A+

The conditional expectation is then given by

E[X)|Y =m] anPXk—nkH/ m)= Y nP(Xp=ng|Y =m)

nk_O nk:()

. ZL: ; v m—ng
= an(ﬁ)w( EL)

A+ +AL)"

nkfl
) L M=k
1 m < )
2 [ 2 a
OIS =\ Py
I m—ng
1
o e [ 3
m _ | J
(>\1+ ~+Ar) nE=1 k( nk) J=1l.j#k )
m)\k

TS

I m—1—(ni—1)
_1)' )\nk—l )\
% Z (ny, — 1)! —1—(nk—1))! k 2. N

ne= 1 j=1,7#k

m—1—ng

mAg e (m—1)! L
- L DO
m (m —1—n) * J
()\1 + + )\L) 0 nk.(m 1 nk). I Tk
m)\k m—1
— G Y
(M +--+AL) (1 2
- m/\k
TN+ AL
where we have used the binomial theorem (z+y)? ' = Y"7_ ( Haa=1=kyk for q a positive

integer.
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A.3 Additivity of Fisher information matrices

An important and useful property of the Fisher information matrix is that when the un-
derlying data is composed of stochastically independent subsets of data, the overall Fisher
information matrix for the entire data set can be obtained by summing the Fisher infor-
mation matrices corresponding to the component data subsets. For example, if I;(0) is the
Fisher information matrix corresponding to one image, and I5(0) is the Fisher information
matrix corresponding to another image that is stochastically independent from the first
image, then the overall Fisher information matrix I(¢) corresponding to the pair of images,
taken as one data set, is given by I(8) = I;(6) + I»(6).

This property of additivity can be demonstrated generally by considering data consisting
of K independent measurements z1, 22, ..., 2k, from which we wish to estimate the parame-
ter vector 6 = (61,02, ...,0x). By the independence of the measurements, the log-likelihood
function £ (6 | z1, ..., 2x) needed to calculate the Fisher information matrix I(6) is given,
as shown in Eq. (16.3), by the sum of the logarithms of the K probability distributions
Po,1(21), - .., P, (2K) corresponding to the K measurements. Using the Fisher information
matrix definition of Eq. (17.8), we obtain

1) = E _(8
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i=1 i=1
r K K K K ]
9|z1) 85(0\ OL(0]z;) 9L(0]zi) OL(0]zi) 9|z1)
> 2 Z . Toe T X Ton, . T 2 ow Z
i=1 i i=1 i=1 =1 i=1
K K K K
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- MK
OL(0|z; OL(0]z, 0|z, OL(0)z;
E;ng ')E;(')Z <|>
[ & or)z) & ac)z) [ & or@) & oc00z0))
_ E El 905 Z: 90, E Z; 905 ZZ: 905
[ & or02 9L (6] [ & or02 0L(0]24) |
EZQ‘)Z L)EZ;}')Z ()
L li=1 Le=1 i
B Z aL(9|z,) Z BL(9|21 i
B _Z 8£(9|zl) Z az; 9|zl
Li=1 i=1 |
[ K
DL(0]2) T 0L(0]2) |
E ;1 90 Z oon ||
K 2 K
DL(0]2:) DL(0]2:) DL(O]z:) aL( 9|z1) DL(0]2)
Sr[Co)] Lefsmese] - Selmeese]
K K 2 K
OL(12) 0L () 0L(6]2:) OL(6]z:) DL(0]2)
_ 2[ ) mel(e)] o el
K K K 2
ac(epb ac(epb BL(0]2:) DL(O]z:) DL(0]z;
Se[apeaeen) Selegeeng] o fel(5g)] |
(8£(0\zi)>2 OL(0]z:) OL(O|z:) AL(6]z:) OL(B]z:) |
~ o0, 90, 905 90, 00x
K DL (0]2) DL(0]2) (8£(9|z,¢))2 OL(6]z;) DL(0]z:)
:Z Bl 0 om 905 905 00n

<.
[

OL(0|zi) OL(0]2:)

O0L(0]z:) OL(0]zi)

DL(0]2;)

B e (255
:gEK; 9|Zi))T(§0 92’)] ZI (A.9)

showing that the overall Fisher information matrix I(6) is the sum of the Fisher information
matrices I;(0),i = 1,..., K, corresponding to the K independent measurements z1, ..., 2k
In going from the expectation of the product of sums to the sum of the expectations of
products, only products of partial derivatives involving the same measurement z;, ¢ =

1,..., K, are kept. This is because by the independence of the measurements, we have, for
,j=1,....,K,i#j,andn,m=1,..., N,
OLO|2)ILO] )] _ - [ILO]z)] _[0L0O1z)] _, o_
T o0, |~ 00, | e, | 000

The additivity property of the Fisher information matrix is easily seen in the results of the
examples of Sections 17.1.3 and 17.1.4. Since in both examples the independent measure-
ments consist of repeat measurements of a random variable, the overall Fisher information
matrix I(0) is the sum of N, identical Fisher information matrices corresponding to the
N, independent measurements.
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Analysis

B.1 Delta function

A delta function 6, is defined for a point 2y € R by the property that it has in regards to
integration. Specifically, for a piecewise continuous function f, the integral of the product
of f with the delta function produces the value of the function f at the point xg, i.e.,

/ " (@), (2)dz = F(z0).

The delta function is not a function in a strict mathematical sense and a rigorous definition
is more complex (Note B.1).

B.2 Taylor series approximation

If a function f(z), € R, is infinitely often differentiable at the point zg € R, then the
Taylor series of f around the point xq is given by

(o) f" (o)
1! 2!

f/l/ (xO)

3!

f(@o)+ (x — 20) + (x —x0)® + (€ —@0) + -+
Given that certain conditions are satisfied, the Taylor series converges to the function f in
a neighborhood around the expansion point xg.

An example that is important for us is the Taylor series expansion of the function
f(z) =1+ 2, z > —1, around the point 2y = 0, which is given by

1 1 1 5
ldsg — 224 =3 2 4
TR T Tt

As a result, for z small, v/1 + x can be approximated well by the first two terms, i.e.,

\/1+xz1+g.

B.3 Change of variables theorem

Let g = (91,92,-.-,9n): B C R™ +— R™ be an injective and continuously differentiable
function. Let f: R™ — R be an integrable function and A C R", then the change of

A-9
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variables theorem is given by

T, v2, - yn)dyadys - - - dyy,
g(A)

:Af(g(xl,x27...,xn))|det(J(g) (1,22, ..,Zp))| dx1dzs - - - dpy,

where J(g) is the Jacobian matriz

091 (%1,22,..,2n)  O0g91(®1,%2,..,n) . Og1(T1,%2,...,T4)
oz Oxo Ox .,
092(%1,%2,..,®n)  092(21,22,.-,%n) . 0g92(T1,%2,...,Tn)
. oz Oxo Ox .,
J(g) = : : _ )
0gn(1,22,.-,%n)  Ogn(T1,%2,-.Tn) . Ogn(Z1,22,...,%0)
oz Oxo Ox,,

B.3.1 Change of Cartesian coordinates to polar coordinates

Of particular interest for us is the application of the change of variables theorem to the
translation of an integral when the coordinate system is changed from the Cartesian co-
ordinate system to the polar coordinate system. We would like to integrate an integrable
function f: R? — R.

If g: [0,00[ x [0,27[ ~— R? is the coordinate transformation from the polar coordinates
(r, ¢) to the Cartesian coordinates (x,y), i.e.,

g(T, ¢) = (gl(r7 (25)792(7', (b)) = (’I“ cos(¢),rsin(¢)) = (x,y),

then we have for the Jacobian

g1 (r,¢ dg1 (7, Or cos(¢ Or cos .
J(g) _ gl{)(r ) gb(q5 ¢) _ ar( ) 3¢(¢)) _ ( COS(d)) —r SIH(¢) )
8928(:,@ 69%(;@) or b;;l;(aﬁ) or ?‘;g(@ sin(¢) rcos(p) )’

and the modulus of its determinant is given by

o (58 7 )| ==

Therefore, by the change of variables theorem,

oo 2w

/ / f(a, y)dady = O/ 0/ r1 (g(r, 8)) dodr. (B.1)

—00 —O0
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Fourier Transform

C.1 Fourier transform

The Fourier transformation is an important mathematical technique that plays a major role
in optics, and in particular in the analysis of wave propagation and diffraction theory. Let
f :R — C be a function such that f (x)|dz < oo. Then the Fourier transform F(f) of
f is defined as

Fn©=[ ¥ )€ dr, e R

Similarly, for a function g : R — C such that [*_|g(£)|dé < oo, we can define the inverse
Fourier transform

(7o) @)= | T g, e R

— 00

The convolution theorem states one of the most important properties of the Fourier
transform, i.e., that the Fourier transform of the convolution of two functions is the point-
wise product of the Fourier transforms of the functions. We have, according to this theorem,

(F(fx9) (&) = (F() (&) - (F(9) (&), E€R,

where the convolution f x g is defined by
(fxg)( / fle—y)g(y)dy, =z €eR.

We will also frequently use multidimensional generalizations of the Fourier transform.
For an n-dimensional function f : R" — C such that [, |f(z)|dz1dzs - - - dr, < oo, with
x = (x1,...,2,), the n-dimensional Fourier transform F(f) of f is defined by

(FU)©) = | fl@)e ™ dgday - dr,, &€R™
]Rn

For an n-dimensional function g : R™ — C such that fR" lg(&)|d&1dEs - - - dE,, < oo, with
&= (&,.-.,&), the n-dimensional inverse Fourier transform is defined by

(F7H9) (@) = / (O dey - d, x ER™

The term inverse Fourier transform is justified since the inverse Fourier transform inverts
the Fourier transform operation, i.e., for integrable functions f and g, we have

FUF)) =f and F(F Hg) =g

A-11
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C.1.1 Fourier transform of circularly symmetric functions

We now specialize the prior definitions to investigate the case of the Fourier transform
applied to functions of two variables, i.e., we assume that

f:R%2 = C.

In Cartesian coordinates the Fourier transform is then given by

(f(f))(yl,yz):/ / Flay, mo)e 2T 202) 4oy oy

We now also assume that f is circularly symmetric, i.e., for some single variable function
f*, we have that for all (21, 29) € R?,

f(z1,20) = f* (\/i% —Hv%) = f(r), r= m

We will now calculate the 2D Fourier transform under this assumption. Using polar coor-
dinates for both the pairs (z1, z2) and (y1,y2), i.e., setting

(z1,22) =: (rcos(@), rsin(¢)), r
(y1,y2) =: (pcos(¥), psin(v))), p

we have, using the change of variables theorem (Eq. (B.1)), that

o] 2m
(F(f) (y1,92) =/ / rf(r cos(¢), rsin(¢))e” 2T cos(@yatrsin(d)yz) gy
o Jo

[e'S) 2m
_ / / Tfs (,r)e—27ri(rp cos(¢) cos(¢)+rpsin(¢p) Sin(w))dQSdT
0 0
00 2m ) 0 2m )
— / / ,rfs(7,)6727rzrpcos(¢7w)d¢dr — / Tfs(’l”) / 672772rpcos(¢)d¢dr
0 0 0 0

o] 27 ) 00
:/ rfs(r)/ e2mrpcos(¢)d¢dr:27r/ rf°(r)Jo(2mrp)dr,
0 0 0
where p = \/y? +y2. In the last step, we made use of the zeroth order Bessel function
identity
1
Jo (.T) :

27
/ e es@dp, x e R.
0

This result implies that the 2D Fourier transform of a circularly symmetric function is itself
circularly symmetric.

C.2 Discrete Fourier transform

Having reviewed some of the basic results for the Fourier transform, we now give a similar
review of the basic results for the discrete Fourier transform. We will use the discrete Fourier
transform primarily for the analysis of data from pixelated detectors.
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Given a sequence z = (zp)o<n<n-1, Tn € C,n=0,1,..., N — 1, we define the discrete
Fourier transform (DFT) of the sequence by

N—-1
(DFT (x))), := Y ane ™N  p=0,1,...,N - 1.

n=0

The inverse discrete Fourier transform (IDFT) for a sequence X = (Xy)o<k<n—-1, Xi € C,
k=0,1,...,N — 1, is defined by

1 =
(IDFT (X)), == ~
k=0

=

Xke%““"/N, n=0,1,...,N —1.
The inverse discrete Fourier transform is indeed the inverse of the discrete Fourier transform,
and we have that

IDFT((DFT)(z)) =2 and DFT(IDFT(X))=X.

Two important properties are Plancherel’s theorem and the convolution property, with
Plancherel’s theorem stating for the vectors above that

N-1 1 N-1
S fealt = & S 1P,
n=0 k=0

or equivalently that the square of the {2 norm of the vector z equals the square of the I2
norm of the vector associated with the discrete Fourier transform up to the constant %

The definition of the convolution of two finite sequences creates technical problems due
to the finiteness of the vectors. To deal with these issues, we define the periodic extension
w® of a finite vector w of length N by

e ._
Wy = W(n mod N)» n € Z,

where (n mod N) is the integer a, 0 < a < N — 1, such that for some integer b, we have
that n = a + bN. With this notation we can now define the convolution x * y of two finite

sequences & = (zp)o<n<n—1 and ¥ = (Yn)o<n<N-1, Tn,Yn € C,n=10,1,...,N — 1, by
N-1 N-1
(T *Y)n = Z Ty = Z xy_y, n=0,1,...,N—1
I= 1=0

Analogous to the continuous case, we have that the discrete Fourier transform of the con-
volution of two sequences can be obtained as the point-wise multiplication of the discrete
Fourier transforms of the individual sequences, i.e.,

DFT(xxy) = DFT(x)- DFT(y).

To write the identity more explicitly, if (Xg)o<k<n—1 = DFT(x), (Yi)o<k<n—1 =
DFT(y), and (Ck)o<k<n—1:= DFT(x *y), then

Co=Xp- Yy, k=0,1,...,N—1.
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C.3 Multidimensional discrete Fourier transform

We now generalize the above definitions and identities for the discrete Fourier trans-
form to multidimensional arrays. If £ = (% ny,....nk )0<ni <Ni—1,0<ns<Na—1,...,0<nx <Nx—1
is a K-dimensional finite array of real or complex numbers, we can define the
K-dimensional discrete Fourier transform analogously to the 1D case as X =
(Xky koo kre JO<kL <Ny —1,0<ks <No—1,...,0<kx <Ngx —1 := DFT(x), where for k; = 0,1,..., N; —
,i=12,...,K,

Ni—1Nx—1 Ng—1
thkz, 7 E E E xnhnz, m K€—27T’Lk1'n.1/N1e—27r2k2n2/N2 - 6_27|"LkKnK/NK.
’I’Ll_O ’I’LQ_O TLK_O

Similarly, the inverse multidimensional discrete Fourier transform is defined as x :=
IDFT(X), where for n; =0,1,...,.N;—1,1=1,2,..., K,

1
mnl n2,...,NK = N A
3M2,5.005 NlNQNK
Ni—1 Nx—1 Ng—1
X E E E thkz, 7k 27T’L"n1k1/N1 eQﬂ'inng/NQ .. eQﬂinKkK/NK.
k1=0 ko=0

Again we have that the inverse multidimensional discrete Fourier transform inverts the
multidimensional discrete Fourier transform, and therefore

IDFT((DFT)(z)) =2 and DFT(IDFT(X))=X.
In order to define the convolution between two multidimensional arrays
T = (Tnyng,ooni J0Sn SNI~1,0Sn2<Na—1,...0Snx <N -1 and
y= (ynhnz,...,nK)OSnl§N171,0§n2SNgfl,‘..,OgnKSNKfl

of equal dimensions, we need to define the periodic extension of a multidimensional array.
We do this analogously to the 1D case by defining the extension for each of the dimensions
of a multidimensional array w, obtaining

€ py—
Whina,...ng *— W(ng mod Ni),(n2 mod Nz),...,(nxg mod Ng)s T1,12,...,NK € Z.

We can now define the convolution = xy as

Nj—1 Ny—1 Ng—1
E E § : e
(x*y)nl,ng,... xll,lg,...,lxynl—ll,nz—lg,...,nK—lK
11=0 [2=0 lx=0
Ni1—1No—1 Ng—1
e
E E : E : Ly —ly no—la,...mx —lx Iz, i
11=0 Il3=0 lx=0

n =01,....,N—1,1=1,2,..., K. With this definition, we again obtain that the dis-
crete Fourier transform of the convolution of two multidimensional arrays is the point-wise
product of the discrete Fourier transforms of the arrays, i.e.,

DFT(xxy) = DFT(x) - DFT(y).

The relationship between a multidimensional array and its multidimensional discrete
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Fourier transform is even deeper, as expressed by Parseval’s theorem and Plancherel’s the-
orem, which state that the “geometry” of the space of arrays is identical to that of the
space of Fourier transforms. As a result, we can perform least squares optimization tasks
and related computations interchangeably in either domain.

The multidimensional Parseval’s theorem is given by

E E § : xnl,nz, ,nKy’ﬂl’n%

TLl:O TLQZO nKg= =0
N;—1Ns—1 Nig—1
E E E Xk RS
N1N2 NK 1,72, K 152500y
k1=0 ko=0

This theorem tells us that the inner product of the arrays x and y is, up to a constant that is
only dependent on the sizes of the arrays, identical to the inner product of their transforms.
If we set y = x, we immediately obtain the multidimensional Plancherel’s theorem, which

is given by

Ni—1N3—1 Nig—1 Ni—1Ny—1 Ng—1

Z Z Z |xn1,n27 ,nK|2 N1N2 Ng Z Z Z |Xk1J€2, kK %

ny1= O’nz 0 nkg= =0 k}l_O kz_o






D

Least Squares Minimization

D.1 Least squares minimization problem

We discuss here the problem of least squares minimization. This problem is very easily posed
and solved using the language of linear algebra. The solution is derived here for the general
scenario where the entries of a linear transformation can be complex. We therefore use the
conjugate transpose, denoted by the superscript *. In Section 21.3, the solution derived here
is written instead with the transpose operator T  as it is assumed there that the entries of
a linear transformation are all real.

Let A: U — V be a linear transformation between the inner product spaces U and
V' with inner products (-,-);; and (,-),,, respectively. Assume that A*A is invertible. As
examples, we can think of U = R™ and V = R™ with A given by a matrix that we also
denote by A for simplicity. The inner products for U and V are then simply given by the
standard scalar products between vectors in R™ and between vectors in R™, respectively.

We want to consider, for a vector b € V and a linear transformation C' : U — V, the

minimization problem

inf (|| Az —b]* +[|C[?) . (D.1)

Before addressing this general regularized problem, we will derive a solution for the non-

regularized problem
inf ||Az — b||?,
zeU

where we have set C' = 0. In fact, we are primarily interested in finding x¢ such that

Azo — b|*> = inf || Az — b||. D.2
| Azo —b||" = inf ||Az — b (D.2)

First, consider the orthogonal projection Pr,nge(a)y of V' onto the range range(A) =
{Az |z € U} of A. It is important to note that in fact P.gpgea) = A(A*A) T Ax
This can be seen as follows. For y € range(A) we have that y = AZ for some
i € U. Therefore, A(A*A) "A*y = A(A*A) 'A*Az = Ai = y € range(A).
For y, € (range(A))*, the orthogonal complement of the range of A, we have
(yA@ ) Ay, ) = (A A) Ay yu) = 0forall y € V as A(A4"4) " A%y €

range(A) and y, € (range(A))™". This implies that A (A*A)~" A*y, = 0 and hence that
Prange(A) =A (A*A)71 Ar.

Now we use this projection to decompose the expression into terms that are in the range
of A and its orthogonal complement. For x € U and denoting by Prange(ay)+ the orthogonal
projection of V' onto the orthogonal complement of the range of A, we have, by Pythagoras’
theorem,

A-17
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2 2
142 = b2 = | Prangecay (A = B)[[* + | Prangeay - (A2 = b)|
2 2
= ||A£C - Prange(A)bH + H‘P(range(A))*b ‘
= |4z — ball® + [[bas |1,

where b4 = Prgnge(a)b and by = P(mnge(A))L b.
As |[ba.||* does not depend on x, we have changed the optimization into the analogous

optimization problem
inf || Az — bal|?,
xzeU

with the important property that b4 is in the range of A.

To solve this problem, we introduce a new inner product space (:E,y)Q = (x, A*Ay),
z,y € U, with norm ||z, ==, /(z,2)y = \/(x, A*Ax). Using this inner product space, we
obtain

[ Az — bal|* = (Az, Az) — 2 (x, A*ba) + (ba, ba)
— (z, A" Az) — 2 <x AFA (A A) A*b> + <A (A*A)~" A*b, A (A" A)" A*b>
= (z,2) — 2 <33 (A*A)~! A*b>Q + <(A*A)_1 A*b, AT A (A A) ! A*b>
— (z,2) — 2 <x (A*A)~! A*b>Q + <(A*A)_1 A*b, (A" A) 7! A*b>Q
>
- Hx (AT A) A% \Q

2
Therefore, with zp = (A*A) ' A*b, we have that on—(A*A)_l A*b o

| Azo — bal|> = 0. Hence g is the optimizing solution and

inf |z —b|* = inf || Az = ba* + [[bar]* = [[Awo — ball” + [[bax |I* = [lba-[*,

Having obtained a solution to the non-regularized problem, we can now address the
regularized problem by reducing it to a non-regularized one. We can rewrite the original
regularized minimization problem as

. o 2 2 s A o b
inf (e 012 + fcal?) = ng |( & )= (g

P A = b
im(A). 5= (1)
The problem is thus written in the form for which we have derived a solution. Assuming that

(fi) A = (A*A+ C*0) is invertible, we have for the solution to the original regularized
minimization problem (Eq. (D.1))

2
= inf ||Az — b|?,
zeU

where

o = ((A)*A)fl (A)*z}: (A*A+C*C)~1A™. (D.3)
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D.2 Linear least squares in the Fourier domain

We now consider the deconvolution problem where we want to minimize the regularized
least squares criterion

XrrLr = arg min (||I—psf*XH2+||W*X||2), (D.4)
X

where I, psf, W, and X are functions of compatible dimensions and * is the convolution
operator. Applying Plancherel’s theorem, we can translate this problem into the frequency
domain as

Xprp=F" [argmin (IF(D) = Fpsf) - FEOI + | FW) - ]-‘(X)|2)] .
F(X)

We want to apply the solution of Eq. (D.3), and therefore have to write our minimiza-
tion problem in terms of linear algebra. We first sketch how we can introduce notions
of linear algebra into the discussion of Fourier transforms. The Fourier transform of an
n-dimensional function is an n-dimensional function on R™ mapping into C. Let F' be
the vector space of all such functions that are both integrable and square integrable,
e, f e Fif [ - [T |f(&,....&)|Pd&---déy < oo for p = 1,2. It is straight-
forward to show that F is in fact a vector space, as the sum of two such functions
and the product of such a function with a complex scalar are again in F. In fact, we
can consider F' to be an inner product space by setting, for fi,fo € F, (f1, f2) =
S5 [T &, &) (&, En)dEr - - dEy. Now assume we have another function
g on R™ such that sup {|g(&1,...,&n)] : (§1,--.,&n) € R"} < oo. With this function, we
define the multiplication map

M,:F = F
f=gaf,

where gf is nothing but the point-wise multiplication

(gf)(€17)€n):g(£l77£n)f(£17,£n)

The adjoint map M, of this map is easily determined as (M, f1, f2) = (91, f2) = (f1,9/f2) =
(f1, Mgf2), f1, fo € F. Hence My = Mg.

Using the above, let us denote by Mz(,sf) (Mzaw)) the multiplication operator that
multiplies point-wise any function of compatible dimension with F(psf) (F(W)). With this
we can write

Xpip=F ! [arg min (|| (1) = Mrep) - FXO|* + | Mraw - FX)|*) |
F(x) ]

Now we can apply Eq. (D.3) to obtain

Xprr=F" (M]*r(psf) “Mppsp) + Mz - Mf(W))

= 5 [(FGed1- Fus) + 7T 7)) Ty £

—1

=7 (1F s+ FOVE) F - F 0]
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Here we have used that the adjoint map M j;(ps P of the multiplication operator Mz (,sy) is

given by the multiplication operator that multiplies with the complex conjugate F(psf) of

the function F(psf), i.e., by M}(psf) = MW' Similarly, M}(W) = Mm. The above

expression for Xrrr shows how the solution to the regularized deconvolution problem can
be written in a compact fashion through Fourier transforms.
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Fisher Information for the Fundamental Data
Model

We derive here the Fisher information matrix corresponding to the fundamental data model,
ie, Eq. (17.11). We follow closely a previous derivation (Note E.1), but use the zero-
truncated Poisson distribution in place of the Poisson distribution to model the number of
photons detected in an image.

We begin by repeating here Eq. (16.10), the log-likelihood function corresponding to
an image of Ny photons detected on the detector C' during the acquisition time interval
[to, t]. Letting wy := (rg,7x), k = 1,..., No, where rp = (z1,yr) € C denotes the spatial
coordinates and tg < 7 < t denotes the time point at which the kth photon is detected, we
have the log-likelihood function

No No t .
L (9 ‘ Wiy .y wNo) = Zlnf077—k: (’I“k) —|—ZhlAg(Tk) —/ Ag(T)dT— In (1 —e fto Ae(‘r)d7—> 7
k=1 k=1 to

where 6 € O is the vector of parameters to be estimated from the image and © is the parame-
ter space. In this expression, fy -, (r%) denotes the density function of the spatial coordinates
7y, of the kth detected photon, and Ag(7), T > to, denotes the rate of photon detection. The
latter is the rate function of the Poisson process {N(7);7 > to} that models the arrival
of photons to the detector. The number of photons detected during the acquisition time
interval [tg, t] is therefore represented by the Poisson random variable N (¢), and the mean
number of photons detected during this interval is given by E [N (t)] = f:o Ag(T)dr. How-
ever, Ny, the strictly positive number of photons that comprise the image, is a realization
of N (t) given that N (¢) > 0. In what follows, the expected value of a function of the spatial
coordinates and time points of the Ny photons that comprise the image will therefore be
evaluated under the condition A/ (t) > 0.
For # € © and 7 > tq, define

1 We,ir(ﬁ recC, Me(U)ZZAl()aA;éEU)’
ol\o

R PR R

Then the derivative of the log-likelihood function with respect to 8§ € © is given by
(Note E.2)

O'Zto.

A-21
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L0 |wi,... ,wy,) <& 1 8f97k ) 1 aAg /
o) _ Ag(
0 ;; fo.m (1) Z Ao(m) 00 o7

7f Ag(T)dT t
e “to 0
A o Jly Ae(yar ( 00 A“’( )d )

S L Q) S M)
= for(re) 00 = Ao(m) 99
1 o [
e ), MO
N N
- o 0 1 aAQ( )
kz_:ljam(rk)ﬁ—;/\/le(%)— — [ Ao(r) /to 00 d

Using this derivative in Eq. (17.8), we obtain, for § € O, the Fisher information matrix

L0 | wr,...,wn,)\" (OLO | wy,... wx,)
00 00
No No t T
1 aAe(T)
T+ > M) - —— o [ (2 dT) »
(; ,; 1—¢ Jiy No(T)dr to tolv}
No No .
1 ONg(T)
ZJG,TL(TI)+ZM9(TZ) - —3 / dT)]
(l_l = 1_¢ Jiy Mo(r)dr 00
No No No No
ijrk(rk)zje,n(m) ngrk(rk)ZMg(n)}
k=1 1=1 k=1 1=1

[ No t
1 ONg(T)
J— T .
E § :"79,‘% (rk)‘| 1—e 7ftt0 Ao (T)dT to 00 dr

1(0) = E

=E +E

-No

+E ZM(; (k) Zjﬁ'rl (1) ZMG (7k) ZM9 Tl‘|
'No
B T . 1 /8A9(7')
& ;Mﬁ (T’“)] oot ), —on 7

1 ONg(T
71_6—ftt0A9(T)dT [0 ( 89 ) < ZJGTk rk“|

+E

No
1 ONg(T)
E Mo(mi)| — . / dr | . (E.1)
; 1 _ e_ fto A@(T)dT to 89
To evaluate further the terms of I(6), we first consider a general function A that depends
on {wy,...,wn, }. By the assumptions that the temporal and spatial components of photon

detection are independent of each other, and that the locations at which the Ny photons
are detected are mutually independent, we can write, for the expectation of H,
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oo t t
E[H(Tl,...,’I‘NO,Tl,...,TNO)]: Z / / /C"'LH(Tl,...,TNO,Tl,...,TNO)><
_q1Jt to

sTNgs Ty - TNO,N() N0|N()>O)d7'1 dT’NOd’ﬁ'-'dTNO

7’1,..
/ // /H T1ye 3TNy Ty« - TNO)
to to

(’I“l,.. s T Ngs T1y - - - TND,N() No,N(t)>O)/P(N(t)>O)

d 1~--d’r‘N0dT1-~-dTN0

v o L
:—t R st HTl,...,rN,Tl,...,TN X
1—67 jiO Ag(‘l’)d‘l’ Z to to C C ( ’ 0)

Do (7’1, e s TNy Tly -+ - s TNy s N () = No) dry -+ - dryydr - - - d7n,

1
:W (/ /[/ /H Tls ooy TN Tly e -3 TNy) X

Do (7“17---,TN0 | 71y Tg, N (t) = No) drry - - - dry, ] %
pg(Tl,.. TNO‘./\[(t No)d’Tl dTNO)P(N() No)

1
- 2 (L L L Lo

fe,ﬁ (’1”1) t fG,TNO (TNO) dry--- dTNo} X
Po (Tl,...,TNO ‘N(t) :No)dTldTNO)P(N(t) = No), (EQ)
where we have used py to denote a probability density function.
Now, consider the case where H is the sum H (71, ..., "Ny, T1s -+ -, TNy ) = Zgil U (T, k),
where U is a real-valued vector function defined on C x [tg, o0). For a given value of Ny, a
random reordering of the acquired data (ry,71),...,(rn,, Tn,) does not change the value of

the sum H. However, with the reordering the time points of photon detection can be treated
as independent random variables identically distributed with the probability density s¢ given
by (Note E.3)

Ag(7)

B f:o Ag(T)dT’

This implies that in this case we can set

s0(7) T € [to,t], 6 €0.

po (T, 7Ny [ N(t) = No) = s9 (1) -+ 50 (Tv,)

in Eq. (E.2), and the expectation of the sum H is then given by
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1
:1_e—ft0Ag(7dr </t0 /to [/ / (r1,71) A U(TNG, TNG))

X fo.r (r1) - fo TNo (rn,) dry - drNO] sg(T1) 8o (Tn,) dr1 - dTNO) P (N(t) = Ny)

e S ([ e
/ngN )dr + - /fer1 dr/for2 r~--/CU(r,TNO)f0,TNU(r)dr
x50 (

) - S (TNo)dTl dTNO)P(N No)

:1_6 flAe(TdT (/to /t Z/U (r,7k) fo,7, (1)d ]

XSQ( 1) g(TNO)dTl dTNO)P(N N())

oo

:; < t[ U (r,m) f (T‘)d’l":|$ (11)dr ts (72) dr
,6—f,,;]/\9(7')d7'1\%::1 /to/c 1) 0.7 0 (71 1/ o (12) dm

1 to

t t t
/ SQ(TNO)dTNO-l-'-'-i-/ S@(Tl)dTl/ sg (T2) dTo

to to to

/t: {/Cu(r, ™) fo.ru, (r)dr} s6 (TNo)dTNo> P (N(t) = No)

_ W Ngz:jl <N0 /t { /C Ur,7) fe,f(mdr} 5o (7) ch) P (N (t) = No)

1

= o N;io_:l NoP (N(t) = No) /tt Ucu(r, 7) fe,f(r)dr} so (1) dr

L [ [Lutn ] s

1— 6_ fto Ag(T)d

- | | U forrar i (E£3)
—e Jwo to

where we have used that > % | NoP (N(t) = Np) is the mean ft Ag(7)dT of the Poisson
random variable A (t) representing the number of photons detected durmg the interval
[to,t]. Note also that by the definitions of the density functions fy .., k = 1,..., Np, and
the density function sg, their integrals over C' and [to, t], respectively, evaluate to 1. If U is
only a function of 7, then Eq. (E.3) becomes
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E NEU )| = e [ Mo [ [ rtrrar] ar

1
1o T Ae(T)dT/ U for(r d’"} dr

ey <o AT (5.4

1 _ e_ f‘o Ae(T)d

Next, consider the case where # is given by

N() NO
H(T1, ooy PN TLs - -, TN ) = ZU(T‘k,Tk)ZVT (re,m),
k=1 =1

where V is likewise a real-valued vector function defined on C X [tp,00). In this scenario,
a random reordering of the acquired data for a given value of Ny also does not change the
value of H. Therefore, using pg (71,...,7n, | N(t) = No) = sg (11) - - - s0 (Tn,) in Eq. (E.2),
and also using Eq. (E.3), we obtain, for § € ©, the expectation of H as

No No
E ZZ/[(Tk,Tk) ZVT (7’[,7‘1)‘|
k=1 =1
No No
:E ZU(Tk,Tk)VT(Tk7Tk) E Z Z/[(Tk,Tk)VT(T‘le)
k=1 k,l=1,k#l

1 t
]_—f—t[\g(‘r)dT [ Ag (’7—) [‘/CU (7", ’7—) VT (7", ’7—) f();,— (T)d?"] dr
—e Jto o

I /[/ L (2 wmvan)

kd=1,kl
fom (7‘1) o fo,rn, (TNo)dﬁ --dry,) so (1) -+ s (Tn,) dry -+ - dT, ) P (N (t) = No)

- ff Rotar / Ao(T [/ U(r,) (r,7) fgﬁ(r)dr] dr

1
+1 7thA8(TdT (/to /to[ /U (r, k) fo,7, (r)dr

k,1=1,k#l

/CVT (r,m) fon (r)dr} so(11) -89 (Tn,) dry - - - dTNO) P (N(t) = Np)

1 t
:m—um / Ao(7) [ /C U(r,m)V*(r) fe,T(r)dr] dr
- ﬁ Z PN () = No)

Y / [uwn fe,T<r>dr} o () dr / [V 60t s )
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t
- 1— AG(T)dT /to Ao (T [/ (r, ) VT (r,7) fe,r(r)dr] dr

gy

1—e I, Mo(r)dr

<[ [Lutn e s [ 60 o] soerar

1

- W /to Ag(7) [/CL{ (r, ) VT (r,7) f‘gﬂ_(’r)dr] dr
1

1 _ o I Ne(mydr

/Ag [/ (r,7) for(r dr]dr/ e [/v (r,7) for(r )dr] (E.5)

Here, we have used that Y % _ (N2 — No) P(N(t) =Ny) = E [(N(t))ﬂ —EWN(t)] =
Var (N () + (BN (] = BIN ()] = ([, Ao(r

With the above results, we now have the tools we need to evaluate the terms of the Fisher
information matrix of Eq. (E.1). Applying Eq. (E.5), and using that fc Jo.+ (1) fo,r(r)dr =

fC 3f0 T(T) dr =0 for § € © and 7 > ¢, (Note E.4), we obtain, for § € O,

No No
E lZ T (1) D To.m (rlﬂ
k=1 =1

1 t .
T e / Ag(7) [ /C %,Ar)%;(r)f@;(mdr} ir

+ W /t: Ao(7) {/C j(}}(?‘)f&ﬂ?")d?“] dr /f: Ag(T) {/ Je:(ﬂf@,r(ﬂdr} dr
= W/tm,(r) V fefl G <8f98,;(r))Tf9’71( )afeT( ) for(r)d ]dT

_ (1) (8for(r)\" 0fo(r)
- AG(T /to/ ol < ) 20 drdr.
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Similarly, application of Eq. (E.5) yields, for § € O,

Ny No
. [zw S o (m]
k=1 =1

- [ 0 [ MO0 )]
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+1 —f AQ(T)dT/Ae |:/ MG fGT d7“:| dT/ Ag |:/ jHT ng d’l":|

[/ Jo,r(r) fo.r(r )dr] dr

- 1— eff Ao (T)dT / (T

+W/Ae )M (7 [/feT dr]dT t0A0 [/JeT fef()dr}

=0.

Using Eq. (E.5) once again, we have, for § € ©,

1 t
= 1—eff0ABT)dT/ Ag(T) MG (1) My (1) dT

1

t
e . Aot )
—e to

to

8/\9 (7’)

1 6(1) (Oho(7) 1
1— e Jip Ro(m)dr (T)( 90 ) Ag(r

N (8A )
1—e Ag(‘l’ T to

) o0

31\0(7 )
00

1—e" tt Ag(T)dT Ae ( 00

+ le_fjt- AQ(T)dT/ ( ( )> /t:

OAg(T ) Ny (1)
00

dr

ONg(T)
00

Ag(T)Mg (1) dr

dr

——=dr

dr.

Using that ft Ag(T)My(7)dT = ftto 8A59(T)d7', 6 € ©, and applying Eq. (E.3), we obtain,

for 6 € O,

No ) .
E LX_; Jo,74 (Tk)] = W /to Ag(T) |:/C j@,-,—(?“)f977(r)dr] dr =

Finally, application of Eq. (E.4) yields, for § € ©,

No t
1
E [ZMQ (Tk)] = o / Ag(T)Mo(r)dr
k=1 1—e 7t to
B 1 L OMg(T) dr

1 _ 67 fttg AG(T)dT to 89
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Substituting these results into Eq. (E.1), we arrive at the Fisher information matrix

B ) (0fo-(r)\" Ofo-(r)
1(0)—1 —f,UAe(T)dT//f97r< 90 > g it

T
n / 1 (8Ag(7’)) 3A9(7)d7_
1—e fto Ag(T)dr to Ae( ) 00 00

1 t oM (T)\ " L Oy (7)
T T A /t< oo ) ) e T
2 t T t

B 1 / (aA9(7)> " / Mo (r) |

| o Jhdemar | [\ 00 . 00
- 1 /t Ohg(T)\" "

1o o remar [\ 90

1 L Ny (7) 1 P Mg (1)
X<1€—f: Ag(r)dr / o T 1 o= Jip Na(rydr /t o9 7

_ ) (0fo-(r)\" 0for(r)
= ftOAeﬂdT//feT ( o ) og

/ 1 (0Ag(T)\ " OMg(7) "
1—e fto Ag()dr to A@( ) 06 00

2 t T t
e () ) [ (22 [ 20
1 _ e_ ff,o 9(T) T 1 _ 6_ ff,o 9(T) T to 89 to 89

B (1) (0for(r)\" Ofor(r)
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T
t——non //(af“ ) OMo(7) i
1— 67 AB("' 80
e [ (257 5
1—e" ‘AG(T

e Jio Ro ()T <aA9(T >T
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(1 e ftto Ag(T)dT) 00
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+
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Note that here we have used the fact that fc af%‘,i;(ﬂdr =0,0¢€ 0,7 >t to add zero-

valued terms that allow us to express I(6) in its final compact form.
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Fisher Information for the Deterministic Data
Models

F.1 Simple form of the deterministic data model

For the simple form of the deterministic data model, in which the Gaussian noise component
of the data does not depend on the deterministic signal, the signal component of the data
in the kth pixel is denoted as Dy (Eq. (15.22)). Making the assumption that information
about the parameter 6 is contained only in this signal component, we can derive the Fisher
information matrix for the data in the kth pixel as we did in Section 17.3.1. Specifically, we
denote Dy, as Dy, and start by taking exactly the same steps as in Eq. (17.18), but with
vy i, replaced by Dy, to obtain the Fisher information matrix I(0) as

- 8D9,k TaDg,k 81np9’k(zk) 2
Ik(0)< ae) o E[( T . (F.1)

To evaluate the expectation term, we replace Inpg j(z) with the log-likelihood function for
the deterministic data model as shown in Table 16.1, and we obtain

(55 | = (o (o) - === |

Dy, 2 00 Dy, 2
_E (Zk 92,k Ck) :/ <Z 9,2k Ck) pox(2)dz
fk — 00 gk
1 1 [eS) ) 7(2—D9‘k2—<1¢)2
== — z— Dy — e *k dz
& o [m( 0.k — Ck)
1 = 1

= L /OO 22e *Fdy = L £ =
- .- == &8 =2,

g}% \/ 271'5]% —oo I% I%
where we have used the change of variables = z — Dy, — (i and the fact that the second
central moment of a Gaussian distribution is the variance of the distribution.

Since the expectation term is the Fisher information with respect to Dy 1, we could also
arrive at the same expression by applying, for a scalar parameter 6, the following result
for the Fisher information Igqussian(€0) of a Gaussian random variable with mean yy and

variance €3
1 8Xg 2 1 862 2
I ; == | = — (== . F.2
Gausszan(e) 63 < 80 ) + 263 89 ( )

One can easily verify that by letting @ = Dy k., xo = Do.r + C, and €5 = &2, we obtain the
same result.
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Now that we have Ij(6), the Fisher information matrix corresponding to an N,-pixel
image is just

il Yo roDe  \T [0Dgr\ 1
100) = I,(0) = ’ L . (F.3)
,2 ,;(ae)<ae)§,%

F.2 Gaussian approximation for the CCD/CMOS data model

As discussed in Section 15.2.3.1, when signal levels are high, the data acquired in the pixels
of a CCD/CMOS image may be described using the deterministic data model. Specifically,
the mean of the Poisson signal detected in a pixel may be viewed as the value of a constant
signal, while the variance of the Poisson signal may be accounted for by the variance of
a Gaussian random variable. For an Np-pixel image that is modeled in this way, the log-
likelihood function for the data zj in the kth pixel, K =1,..., N, is as given in Table 16.1
for the Gaussian approximation for the CCD/CMOS data model. The noise coefficient can
be obtained by substituting Inpg x(zx) in the expectation term of Eq. (17.19) with this
log-likelihood function, and simplifying. A faster approach, however, is to calculate the
expectation term by applying Eq. (F.2) with 6 = vy, x¢ = Vo + Tk, and €5 = vg + o7.
Either approach will yield the noise coefficient

Oln z 2 1 1
%:%kE<PMU» - . ).
aVe,k Vo .k + 0} 2 (Vg,k + 0',%)

F.3 Gaussian approximation for the EMCCD data model

As seen in Section 15.2.4.2, an analogous approach to the Gaussian approximation for the
CCD/CMOS data model may be taken to model the data in the pixels of an EMCCD
image. Provided that the initial Poisson signal detected in a pixel is large, the mean of the
amplified signal in that pixel may be taken to be the value of a deterministic signal, while
the variance of the amplified signal may be accounted for by the variance of a Gaussian
random variable. For an IN,-pixel image modeled in this manner, the log-likelihood function
for the data zj in the kth pixel, £ = 1,..., N,, is as shown in Table 16.1 for the Gaussian
approximation for the EMCCD data model. As noted in Section 15.2.4.2, this Gaussian
approximation assumes that the EMCCD detector’s signal amplification is described by the
geometric model of electron multiplication (Section G.1).

Analogous to the case of the Gaussian approximation for the CCD/CMOS data model
(Section F.2), the expectation term in the general noise coefficient expression of Eq. (17.19)
can be directly evaluated using the log-likelihood function from Table 16.1, or it can be
calculated by utilizing Eq. (F.2), in this case with 6 = vg, xo = gvex + Mk, and €5 =
(292 — g)vp. + o;. Either method will produce the noise coefficient

A pg r(zi)\’
Ovg

’ (29> — 9ok + 0% 2((29% — g)vor + 02)°

Ve ="vor-E




G
Models of EMCCD Electron Multiplication

This part of the appendix is devoted to the presentation of further derivations and results
relating to the modeling of EMCCD image data.

G.1 Geometric multiplication-based EMCCD probability mass
function

To obtain the probability mass function of Eq. (15.26), which results from the modeling
of the multiplication of electrons through the typically hundreds of stages of an EMCCD
detector’s multiplication register, we start with an introduction to branching processes.

G.1.1 Branching processes

A branching process is a stochastic process whereby particles are passed through a sequence
of stages, and in each stage, a particle that enters the stage (i.e., an input particle) generates
a number of secondary, or offspring, particles with a certain probability. All particles, input
or offspring, that exit a given stage enter the next stage as input particles. In this way, after
many stages of multiplication, a potentially large number of particles are generated from a
comparatively small number of initial particles.

The described cascading effect of a branching process is captured in a sequence of random
variables characterized by two probability distributions: one for the initial number of parti-
cles to be multiplied, and one for the number of offspring particles that result from an input
particle at a given stage of multiplication. More formally, a branching process with an initial
particle count probability distribution (¢;)i=o,1,.. and an individual offspring count prob-
ability distribution (pi)i:()’l’m is defined as a sequence of nonnegative and integer-valued
random variables (X, )n=0,1,..., given by

Ua n:O7
an{ SXCY, n=1,2,. (G.1)

The random variable X,,, n = 0,,1,..., represents the number of particles at the output
of the nth stage of multiplication. The output of the zeroth stage, Xy = U, is understood
to be the initial particle count prior to multiplication, and is distributed according to the
probability distribution (g;)i=0,1,... For n = 1,2,..., the output of the nth stage, X,, is
the sum of the offspring particle counts Y;, j = 1,...,X,,_1, that arise from the X,,_;
input particles to the nth stage. The random variables Y, j = 1,..., X,,_1, are nonnegative
and integer-valued, and are mutually independent and identically distributed according to
the probability distribution (p;)i=0.1,.... Note that if X,,_; = 0, then Z;(:"fl Y; = 0. Note
also that the offspring particle count Y; includes the jth input particle that produced the
offspring particles.
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G.1.2 Electron multiplication as a branching process

For our application, the particles are electrons, and the stages of multiplication are the
stages of an EMCCD detector’s multiplication register. Furthermore, the initial electron
count is the number of electrons resulting from the object and background signals detected
at a given pixel k, and is therefore Poisson-distributed with mean vg. Hence the initial
electron count probability distribution is given by

e Vrup,

q; = s i:O,l,....

il
Suppose the EMCCD detector has an N-stage multiplication register. Then by the law of
total probability, the probability distribution of the number of electrons at the output of
the register, i.e., the amplified signal, is given by

pn(z)=P(Xy=2)=) P(Xy=x|Xo=1i) P (Xo=1)
=0

=Y P(Xy=x|Xo=1) ¢
=0

e Yy

(oo}
=> P(Xn=u|Xo=1i)- 5 w=01,.... (G.2)
i=0 ’

G.1.3 Geometric distribution of offspring electrons

To arrive at an explicit expression for py(z), we need to determine P (Xy =z | Xy = 1),
the probability of obtaining x electrons at the output of the multiplication register, given
that there are i electrons to begin with. In order to do so, we need to define (p;)i=o1,...,
the probability distribution of the number of offspring electrons that result from a single
input electron at any given multiplication stage. We consider the geometric probability
distribution

pi=1—=0b"1 i=1,2..., 0<b<l1. (G.3)
Note that this distribution does not allow for the possibility of losing an input electron, as
it is not defined for i = 0 (Note G.1).

The geometric probability distribution specifies the individual offspring count to take
on increasing positive integer values with decreasing probabilities. It is therefore suitable
for modeling electron multiplication in an EMCCD detector, where the generation of more
than one offspring electron by a single input electron at any given stage in the multiplication
register can be assumed to be an extremely rare event.

Importantly, the geometric probability distribution has a corresponding probability gen-
erating function that is of linear fractional form. As we demonstrate in the following subsec-
tions, this special property allows us to obtain, by way of probability generating functions,
an explicit expression (i.e., a non-recursive expression) for P (Xy = z | Xo = i) (Note G.2).

G.1.4 Probability generating function of output electron count given
one initial electron

We begin with the probability generating function of the geometric probability distribution
(pi)i=1,2,... which, by definition, is given by
f(s) = ip-si = i(l —b)b st = (1 - b)s i.é(bs)i*1 = d-bs seC, Js|<1
v 7 : 1— bS ) ) = L.

i=1 i=1
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Given that there is exactly one initial electron, the probability generating function corre-
sponding to the probability distribution of the electron count at the output of the N-stage
multiplication register is the Nth iterate of f(s) (Note G.2). Denoted by fn(s), N =0,1,...,
the Nth iterate of f(s) is given by

(1-b)Ns

fN(S):lf(lf(lfb)N)s’ seC, |s|<1, b#£0,

which we prove by induction. For our base case, we have that the expression satisfies the
definition that the zeroth iterate of a probability generating function f(s) is equal to s:

(1-10)°s

fols) =s == =a — o

For the inductive step, we assume that the expression is true for any nonnegative integer
N = n, and show that it is true for N = n + 1 using the fact that f,11(s) = fu(f(s)):

0o () ety
fat1(s) = Fal£(5)) = = s
- - () s
(1 _ b)n-‘rls (1 _ b)n+18

T I1-bs—(1-b—(1-bhs 1—(1—(1-0bnths

G.1.5 Probability generating function of output electron count given i
initial electrons

It can be inferred from the branching process definition of Eq. (G.1) that while all initial
particles will multiply according to a common stochastic model, each of them will multiply
independently of the others. Provided that the initial particle count is a positive integer
i, the probability distribution of the particle count at the output of an N-stage process
will then be the i-fold convolution of the probability distribution of the output particle
count, given one initial particle, with itself. In our current case, the output electron count
probability distribution, given i initial electrons, is therefore the i-fold convolution of the
probability distribution corresponding to fy(s) with itself. By a well-known result, the
probability generating function corresponding to the probability distribution that results
from the i-fold convolution is given simply by [fn(s)]".

G.1.6 Probability mass function of output electron count given i initial
electrons

Given [fn(s)]’, we can mnow obtain an expression for the conditional probability
P(Xy =z | Xo = 1) using well-known properties of the probability generating function.
For an output electron count of z = 0, the conditional probability is given by [fx(s)]’
evaluated at s = 0, i.e.,

1-b)N -0 ’

P(Xy=0]|Xo=1)=[fn(0)]" = Taoa e -% =L (G

The probability of 0 for Xy = 0 is as expected, since given the geometric model of multi-
plication, which does not allow for the possibility of electron loss during the multiplication
process, it should not be possible to have no electrons at the output of the multiplication
register when there is a positive number of electrons to begin with.
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For an output electron count of x = 1,2, ..., the conditional probability is given by the
xth derivative of [fx(s)]", evaluated at s = 0 and divided by z!. This gives the expression

P(XN:x|Xo=i)={ é D=0 - = nNT SR L)

)

where the probability of 0 for ¢ > x+1 is again due to the impossibility of electron loss given
the geometric model of multiplication. To derive the conditional probability of Eq. (G.5),

we first show, by induction, that the zth derivative of [fx(s)]’ is given by
0% [fn(s)]' _
0s®

L\ (@ - D [ =0V 1= (1 —n)N]" (1—b)Ns "
Z(j)(j—l)! I_(0— (1 oM G L—(l—(l—bws] - (G6)

=1

For our base case & = 1, we show that the first derivative of [fx(s)]" is given by Eq. (G.6)
with x =1, i.e.,

CAL1C) | AR IS, |
TR (T L S EE (e (RO

(1) (=)' 1= -] 4 { (1—b)Ns rl

1 (1-1-bN)s)? (- [1-(1-(1-b"N)s

! ()(1 1)! [(1—b)N]J - -pN'"7 [ (1—b)Ns }J
—\j)(G-D! -1 -@1-bpN)s)'? (=) [1-01-1-bN) '

J

For the inductive step, we assume that Eq. (G.6) is correct for any positive integer z, and
show that it is also correct for z + 1 by simply taking its derivative and demonstrating that
the (z + 1)th derivative is of the exact same form, i.e.,

o fnls)] 0 [aw [fﬂs)]’]
Os

Os®+1 0s®

_ZO DIa=-pN T -a-pN)T

DI -1 -@a=-pN)s)"? (i—j-1)

- [1 - él_(f)N ) }

L\ @@= (A=) - -pNTT
+Z(.)j (@ +7) T

(1—(1=@1=bN) )™ (i)

(1-b)Ns I
X[l—(l—(l—b)N) }
_ [(1—p)™)" i [ (1-b)Ns }”“”
CA-(1-(1-bM)s)2 e =@+ ) [1-1-(1-D)N)s
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(e

DL 1-(1-a-bN)s* (-1
1717 et
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To obtain Eq. (G.5), we now evaluate Eq. (G.6) at s = 0 and divide the result by z!, yielding

P(XN:$|X0:i):%.%

s=0

LGB\ @=U e
=22 ()G a0 i-a-07 gl

J
I AN G L T N L
= (,)(il)! (A=p)N] [1-1 -] —

_ (3_”_1> (A=) 1= =), i=1,2,...,2

Note that in going from the second to the third equality, the summation is removed by
observing that 0°~7 is nonzero only when j = i, when we have 0° = 1.

G.1.7 Probability mass function of output electron count

We now have the necessary tools to use the general expression of Eq. (G.2) to obtain the
the probability distribution of X, the number of electrons at the output of an N-stage
EMCCD multiplication register, assuming the electrons are multiplied according to the
geometric model. We know from Eq. (G.4) that the probability of having Xy = 0 electrons
at the output of the register is 0 when the initial electron count Xy is greater than or equal
to 1. The event of having no output electrons does occur, however, with probability 1, when
the initial electron count is 0 (i.e., when there is nothing to multiply in the first place). For
Xy =0, we therefore have, from Eq. (G.2),

) e*l/k]/i
pn(0) = P(Xy =0) =) P(Xy=0]Xo=1) — i
=0 ’
e_ukyg —Vk

For output electron counts X = x, where x = 1,2,..., we use Eq. (G.5) in Eq. (G.2) to
obtain

pn(z) =P (Xy =2) = iP(XN | Xe=i)- e_;‘%
i=0 !
=2 (f:;) (A= 1-a - 6_:”}1

i=1

=g ¥k Z (Z:l) [(1 — b)Nuk]i [1 —(1- b)N}mfi

[(A=b)Nu] T - —pN

G e

where g = (=L is the mean gain of the geometrically multiplied branching process, and

in our current application is referred to as the electron multiplication gain. The mean gain
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is the mean output particle count given a single initial particle (i.e, given that X, = 1),
and is well known to be the mean of the individual offspring count probability distribution
(pi)i=0,1,... raised to the power of the number of multiplication stages N. In our current
case, the mean of the geometric distribution of Eq. (G.3) is 15, and hence g = ﬁ.

Together, Egs. (G.7) and (G.8) give us Eq. (15.26), with u replaced by vy.

G.2 Exponential multiplication-based EMCCD probability density
function

The exponential multiplication-based probability density function of Eq. (15.28) approx-
imates well the geometric multiplication-based probability mass function of Eq. (15.26)
when the electron multiplication gain g is large. To demonstrate how it is obtained, we
start with the fact that if (X,,),=0,1,.. is a branching process with a single initial particle
(i.e., Xo = 1) and an individual offspring count probability distribution (p;)i=o1,... given
by the geometric distribution of Eq. (G.3) with mean 1; > 1 (i.e., with 0 < b < 1),
then as the number of multiplication stages n converges to infinity, the sequence of random

variables (Y;, = X,,/¢)n=01,..., where g = ﬁ is the mean gain of the branching process

yeen

(Xn)n=0,1,.., converges, with probability 1 and in mean square, to a random variable ¥
with an exponential distribution given by

ply)=e7Y, y>0. (G.9)

This result allows us to approximate, for a large N, the output particle count Xy of an
N-stage, geometric multiplication-based branching process with Xy = 1 and ﬁ > 1 by the
random variable gY. The probability density function of Xy =~ gY is given by the following
scaled version of Eq. (G.9):

p(x) = %e_ﬁ, x> 0. (G.10)

If the branching process has instead an initial particle count of Xg =14, ¢ =1,2,..., then,
by the fact that the i particles are multiplied independently, but each according to the
same geometric distribution for the individual offspring count, the output particle count
X n may be approximated as the sum of ¢ independent exponential random variables, each
with parameter é The output particle count X, conditioned on the initial particle count
i, is then distributed according to the Erlang probability density function

plz i) = g<f__1)' <Z>“ 20, (G.11)

which results from the i-fold convolution of p(x) of Eq. (G.10) with itself.
We are now in a position to determine py (z), the approximate probability distribution
for the output particle count Xy. For X = 0, we have

pn(0) =P (Xny =0) =e ", (G.12)

just like Eq. (G.7) since the event of having no output electrons only occurs, with probability
1, when the initial electron count is 0. For X > 0, we use the conditional probability density
function of Eq. (G.11) in

pN(x):Zp(x\i).P(XO:i):zp(wu).qi:e%z:%, x>0, (G.13)
i=1 i=1 i=1 :
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a continuous analogue of Eq. (G.2), to obtain

X e 2\t ( )oo E)i_lyk
— o, Vk - k vp+2 g
pr(@) =e ;9(2—1)' <g) T ' ;g(i—l)‘ﬁ'
i
%) VX
Vk+ Z/k' ( )
g ; (i +1)!

(i (2 ka/g)Q)i

(i 4+ 1)!

o) LTE | s

—(mti \/ka I (2 v/ )

= x>0, (G.14)

where we have used the modified Bessel function identity (Note G.3)
w oo (lu2)j
— } : 1
Iw(u) = <2u> jzo_.ij., w e {0,1,...}7 UER, (G15)

with w = 1. Together, Egs. (G.12) and (G.14) give us Eq. (15.28), with uj replaced by v
(Note G.4).

G.3 Geometric multiplication-based EMCCD noise coefficient

Assume that the log-likelihood function In pg (2x) for the data in the kth pixel of an EM-
CCD image is as given in Table 16.1 for the EMCCD data model, which is based on the
geometric model of electron multiplication detailed in Section G.1. Then using Eq. (17.19),
the noise coefficient v, for the kth pixel is given by
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where p,, , o in the intermediate steps is the probability mass function of Eq. (15.26) with
tx replaced by v, and we have used the fact that it sums to 1 —e™"%* from [ = 1 to
infinity.

G.4 Exponential multiplication-based EMCCD noise coefficient

Assume that the log-likelihood function Inpg x(2x) for the data in the kth pixel of an EM-
CCD image is as given in Table 16.1 for the high gain approximation for the EMCCD data
model. The high gain approximation is obtained, as shown in Section G.2, by using an
exponential random variable to describe the output of a geometrically multiplied branching
process with a single initial particle. Using Eq. (17.19), the noise coefficient v for the kth
pixel is then given by
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where p,, , 4 in the intermediate steps is the probability density function of Eq. (15.28) with
1, replaced by v, which integrates to 1 —e™"* from u = 0 to infinity. In the calculations,

we have made use of the identity 8181756) = Ip(z) — L11(z), © € R, between Iy and Iy, the

zeroth and first order modified Bessel functions of the first kind, respectively.







Notes

Chapter B

1. For a mathematically rigorous definition of the delta function, we refer the reader
to the literature (e.g., [24]).

Chapter E

1. A derivation of the Fisher information matrix corresponding to an image acquired
under the fundamental data model is provided in [85], where it is presented as a
proof of a theorem. See also [107].

-, . aL(0lw,..., )
2. In writing out the expression for (‘WTUJNO), we equate the quantity

2 j;to Ag(7)dr with the quantity f:o aAge(T) dr. The validity of this equality is

explained in [85].
3. For more details on the probability density of an arrival time of a Poisson process
given a positive number of arrivals, see [107].

4. For a formal statement and proof of the result [, af"a’g(r)dr =2 [ for(r)dr =

21=0, see [85].
Chapter G

1. A more general geometric distribution, which does define a probability for the loss
of an input electron, has been used to derive a model for electron multiplication
in [30].

2. To learn more about the use of probability generating functions, including those of
linear fractional form, in the analysis of branching processes, see, e.g., [45, 7, 42].

All Bessel function identities used in this book can be found in, e.g., [3].

The derivation of the exponential multiplication-based probability density func-
tion in Section G.2 is founded on theoretical results presented in [45]. An analo-
gous derivation that uses a more general exponential distribution, which allows
for the possibility of particle loss during multiplication, can be found in [30].

A-43






Exercises

Chapter A

1. Let X; and X5 be two independent Poisson random variables with parameters Aq
and Ao. Show that X := X; + X3 is a Poisson random variable with parameter
A= )\1 + /\2.

2. Let X; and X5 be two independent Poisson random variables with parameters

A1 and Ao. Show that X := X; — X5 is not a Poisson random variable.

3. If X is a Poisson random variable and c is a constant, show that ¢X is a Poisson
random variable only if ¢ = 1.

4. Use a computational software program to plot the Poisson probability distribution
px with A values of 0.01, 1, 10, 100, and 1000.

5. If X is a Poisson random variable with parameter A = 100, calculate the proba-
bility that X > 100, X > 120, X > 150, X > 200, and X > 1000. Also calculate
the probability that X < 100, X < 80, X < 50, and X < 10.

6. Use a computational software program to simulate 1000 random samples of a
Poisson random variable with parameter A = 100. How many of these random
samples are between 80 and 1207

7. Verify that the Gaussian probability distribution function is indeed a probability
density function, i.e., verify that

(a) pyo2(x) >0 for all z € R, and
(b) ffooo Pyo2(x)de = 1.

8. Let X; and X5 be two independent Gaussian random variables with means 7
and 79 and variances U% and 0%. Let a,b,a1,a2 € R.

(a) Show that X := aX; + b is a Gaussian random variable with mean an + b

and variance a’0?.

(b) Show that X := a1 X1 + a2X» is a Gaussian random variable with mean
a1m1 + azne and variance a%o% + a%ag.
9. Use a computational software program to plot the Gaussian probability density

with parameters
(a) n =0 and 0% =0.1,0.2, 1,10, 100,
(b) n =5 and 02 = 0.1,0.2,1,10, 100,
() n=—15and ¢% = 0.1,0.2,1, 10, 100.

10. Verify analytically that the mean and variance of a Gaussian random variable are
indeed 1 and o, respectively, if the probability density function is given by

1
Dn,o2 (Jf) = \/%O'

1 2
e zz@E Tz eR.
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11. Let X be a Gaussian random variable with mean n and variance 2. Show that
% is a standard Gaussian random variable, i.e., it has mean 0 and variance 1.

12. Consider three Poisson random variables X1, X5, and X3 with parameters A\; =
10, A2 = 100, and A3 = 1000. Using a computational software program, for
each case investigate whether the corresponding Poisson probability distribution
function can be well approximated by the probability distribution function of
a Gaussian random variable. If a good approximation is possible, what param-
eter values for the Gaussian probability distribution function provide the good
approximation?
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